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TENSOR PRODUCT IN DETOUR RADIAL GRAPH 
V.MOHANASELVI     M.SURESH 

 
Abstract 
           In this paper, the Tensor Product in Detour Radial graph DR(G) for some standard 
graphs are determined. Also we introduced b-Radial  graph. The maximal  energy and minimal 
energy are defined and they used to find the energy of Tensor Product in Detour Radial graph . 
 
Index terms: Energy, Tensor Product, Radial graph, Detour Radial graph, b-eccentricity, b-
radius. 
 

1  INTRODUCTION 
            By a graph, we means finite simple 
and connected graph. For basic graph 
theoretical terminology we refer to Harary 
[7]. In a graph G , the detour distance D(u,v) 
between a pair of vertices u and v is the 
length of a longest path joining them. The 
Detour eccentricity )(GeD  of a vertex u is 
the distance to a vertex farthest from u . The 
Detour radius )(GrD  is the 
minimum detour eccentricity among the 
vertices of G and the detour diameter 

)(Gd D  is the maximum detour eccentricity 
among the vertices of G . A graph G for 
which )(GrD = )(Gd D is called a self-
centered graph. A vertex v is called a Detour 
eccentric vertex of u if D(u,v)= )(GeD  . A 
vertex v of G is called an detour eccentricity 
vertex of G if it is the eccentric vertex of 
some vertex of G . Let S be a subset of the 
vertex set of G such that e (u) D =i for all i u
∈S . 
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 If v is an eccentric vertex of u and w 
is a neighbor of v, then ),(),( vudwud ≤ . A 
vertex v may have this property, however, 
without being an eccentric vertex of u. The 
properties of eccentric vertices are studied in 
[10 ]. 
 A vertex v is defined to be a 
boundary vertex u if ),(),( vudwud ≤  for all 

)(vNw∈ . In    [10] proved that the 
boundary set of any graph is geodestic, that 
is, every vertex in G lies on some shortest 
path joining two boundary vertices. The 
boundary vertices for a vertex may occur at 
different distance levels. 

  Let G be a connected graph. The b-
eccentricity )(ueb of a vertex u is defined by 

{ :),(min)( vudueb =  
}.uofboundaryaisw The minimum b-

eccentricity among the vertices of a graph G 
is b-radius )(Grb of G and the maximum b-
eccentricity is its b-diameter )(Gdb . 

Definition 1.1 
Two vertices of a graph are said to 

be Detour Radial to each other if the detour 
distance between them is equal to the Detour 
Radius of the graph. A detour radial graph 
of a graph G denoted by DR(G) and it has 
the same  vertex set as in G and two vertices 
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are adjacent in DR(G) if and only if they are 
detour radial in G.  

In this paper, we introduced b-Radial 
graph Rb(G) and Tensor Product on some 
standard  Detour Radial graph DR(G) are 
determined. The maximal and minimal 
energy are introduced to find the energy of 
DR(G) are studied.  

 

2  PRELIMINARIES 

Theorem 2.1[6]  
Let nP  be any path on n vertices. Then 

)( 2PDR = 2P , )( 3PDR = 3P  and 
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Theorem 2.2[6] 

Let Cn be any cycle on 3≥n  vertices, then 
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Theorem 2.3[6] 
Let Cn be any cycle on 3≥n  vertices, then 
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3  MAIN RESULTS 

 
3.1 Some Results on b-Radial Graph  

Definition: 3.1.1 
Two vertices of a graph are said to 

be  b-Radial to each other if the distance 
between them is equal to the b-Radius of the 
graph. A b-Radial graph of a graph G 

denoted by Rb(G) and it has the same vertex 
set as in G and two vertices are adjacent in 
Rb(G) iff they are b-radial in G.  

Theorem 3.1.2 
 Let nP  be any path on n  vertices, then 

1)( =nb Pr

 
Proof. 

  Let v  ( nP )={ }nvvvv ........,, 321 . 

  Let nP  be a connected graph. The b-
eccentricity )(ueb of a vertex u is defined by 

 { :),(min)( vudueb =  
}.uofboundaryaisw  ---------------- (1) 

The minimum b-eccentricity among the 
vertices of a graph nP  is b-radius of  nP it is 
denoted as )( nb Pr  
i.e., )min{)( nnb PoftyeccentricibPr −=  ---
---------- (2) 

Hence, by the equation (1) and (2) 
br  ( nP )= 1

 

 

 

Theorem 3.1.3 
        Let nP  be any path on n vertices. Then

 
nnb PPR =)(

 
Proof. 

Let v  ( nP )={ nvvvv ........,, 321 } , 

br ( nP )= 1 

 
By the theorem 3.1.1 and definition,   

             

nnb PPR =)(
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Theorem 3.1.4 
           Let Cn be any cycle on 3≥n  vertices, 

then 
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Proof. The result follows from Theorem 

3.1.1 

 

 

Theorem 3.1.5 
          Let Cn be any cycle on 3≥n  vertices, 

then 
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Proof. 

Let v  (Cn)={ nvvvv ........,, 321 } 

Case 1: 

When n is even, then b-Radius Cn is 
2
n . A 

vertex and its b-eccentric vertex are b-Radial 
to each other. 

i.e., 
2

,....3,2,1;
2
2

nivandv ini =






 +  have the 

length of b-Radius. 

Hence )( nb CR = 







2
n  disjoint copies of 2P  

)( nb CR = 







2
n
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Case 2: 
When n is odd, 

 Then b-Radius of Cn is 





 −

2
1n . )( nb CR  is 

the cycle with closed path 
122121211 .......... vvvvvvvv rrrrrr +−++  , which is 

isomorphic to nC . 

i,e,. )( nb CR nC≅ . 

Hence, 
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3.2 Detour Radial in Tensor Product and 

Tensor Product in Detour Radial Graph 

        In this section, we take tensor product 

with P2 and some standard graphs. 

Theorem 3.2.1 

     Let Pn be a graph with n vertices, then  

( )
2

2
3 2

, 4
( )

2 3 , 5n

n P if n is even and n
DR P P

P n P if n is odd and n
≥⊗ =  ∪ − ≥

Proof: 

Let v  ( nP )={ nvvvv ........,, 321 } .  

Now, the Tensor product of path with two 
vertices and path with n vertices is given as 
two copies of path with n vertices. 

By theorem 2.1, if n be even and odd 
vertices then the Detour Radial Tensor 
product of path with two vertices and path 
with n vertices is given as n copies of path 
with two vertices and two copies of path 
with three vertices union of (n-3) copies of 
path with two vertices. 
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Theorem 3.2.2 
      Let Cn be any cycle on 3≥n  vertices, 
then 22 )( PnCPDR n =⊗  

Theorem 3.2.3 

Let nK be a complete graph with n vertices 
and 2P be a path with 2 vertices, then  

nn KKPDR 22 )( =⊗  

Theorem 3.2.4

 

Let nK ,1 be a Star graph with n vertices and 

2P be a path with 2 vertices, then 

nn KKPDR ,1,12 )( =⊗

 

 

 

Theorem 3.2.5 

Let Pn be a graph with n vertices, then 
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2 3 , & 5n
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DR P DR P

P n P n is odd n
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Theorem 3.2.6

 Let Cn be any cycle on 3≥n  vertices, then  
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Theorem 3.2.7 

Let nK be a complete graph with n vertices 
and 2P be a path with 2 vertices, then 

0
22 )()( nn SKDRPDR =⊗

  Theorem 3.2.8 

              Let nK ,1 be a Star graph with n 
vertices and 2P be a path with 2 vertices, 
then nn KKDRPDR ,1,12 )()( =⊗

 

 

Remark: 

• Let Pn be any graph with n vertices 
then,  Detour radial of tensor product 

with 2P and nP  is equal to Tensor 
Product with Detour radial of 2P and  
Detour radial of nP . 

               i.e., )( 2 nPPDR ⊗ = )()( 2 nPDRPDR ⊗  

 

4  ENERGY ON TENSOR PRODUCT IN 
SOME STANDARD GRAPH 

 
Definition 4.1 
  Let G be a simple graph with n 
vertices. Let A be the adjacency matrix of G, 

nii ,2,1, =λ  be eigen value of A. The 
energy of the graph is defined as 

∑
=

=
n

i
iGE

1
)( λ  

Definition 4.2 
Let G be a simple graph with n 

vertices. Let A be the adjacency matrix of G, 
nii ,2,1, =λ  be eigen value of A. The 

maximal energy of the graph is defined as 

 ∑
=

=
n

i
iGE

1
max )( λ  

Definition 4.3 
Let G be a simple graph with n 

vertices. Let A be the adjacency matrix of G, 
nii ,2,1, =λ  be eigen value of A. The 

minimal energy of the graph is defined as 

 ∑
=

=
n

i
iGE

1
min )( λ  

Theorem 4.4 

Let nP  be odd path on n vertices. Then  

  (i) )1(2)]([ 2max +=⊗ nPPDRE n                  
(ii) )1(2)]([ 2min −=⊗ nPPDRE n  
By using definition 4.2 and 4.3, we get 
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Proof. 
Let n is an odd path then, 

 
 

 
 

 
 

 
 

 
 

 

 

The maximal energy of tensor product on 2P
and nP is 2(n+1) and the minimal energy of 
tensor product on 2P and nP is 2(n-1). 

i.e., )1(2)]([ 2max +=⊗ nPPDRE n and 
)1(2)]([ 2min −=⊗ nPPDRE n  

Theorem 4.5 
        Let nP  be even path on n vertices. Then 

nPPDRE n 2)]([ 2 =⊗  

Proof. 
Let  n is an even path then, 

The characteristic polynomial is 
0)1()1( =+− nn λλ  

 

Hence, the energy of tensor product on 2P
and nP is 2n. 

Theorem 4.6 

         Let nC be cycle of even length then 
energy of Tensor Product with Detour radial 

of 2P and  Detour radial of nC is 22
n

. 
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Proposition 4.7 
Let G be a simple graph and 

nii ,2,1, =λ  be eigen value of the adjacent 
matrix A then the relation between energy, 
maximal energy and minimal energy is 

)()()( maxmin GEGEGE ≤≤  

Proof. 
The proof is followed by the definition of 
energy, maximal energy and minimal 
energy. 

Proposition 4.8 
Let G be a simple graph and 

nii ,2,1, =λ  be eigen value of the adjacent 
matrix A then )()( maxmin GEGE <  

Proof. 
Since by preposition 4.7 and by the 
definition, this gives the direct result. 

CONCLUSION 
         Thus in this paper, we find the b-
Radial graph and Tensor Product in Detour 
Radial Graph for some standard graphs. 
Also maximal energy and minimal energy 
are defined and its exact values are obtained 
for Tensor Product in some standard graph. 
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